
PHYSICAL REVIEW E 69, 036303 ~2004!
Robustness of the inverse cascade in two-dimensional turbulence
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We study quasisteady inverse cascades in unbounded and bounded two-dimensional turbulence driven by
time-independent injection and dissipated by molecular viscosity. It is shown that an inverse cascade that
carries only a fractionr of the energy input to the largest scales requires the enstrophy-range energy spectrum
to be steeper thank25 ~ruling out a direct cascade! unless 12r !1. A direct cascade requires the presence of
an inverse cascade that carries virtually all energy to the largest scales (12r !1). These facts underlie the
robustness of the Kolmogorov-Kraichnank25/3 inverse cascade, which is readily observable in numerical
simulations without an accompanying direct enstrophy cascade. We numerically demonstrate an instance where
the k25/3 inverse-cascading range is realizable with 79% of the energy injection dissipated within the energy
range and virtually all of the enstrophy dissipated in the vicinity of the forcing region. As equilibrium is
approached, the respective logarithmic slopes2a and 2b of the ranges of wave numbers lower and higher
than the forcing wave number satisfya1b'8. These results are consistent with recent theoretical predictions.

DOI: 10.1103/PhysRevE.69.036303 PACS number~s!: 47.27.Gs, 47.27.Eq
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I. INTRODUCTION

It is commonly believed that the simultaneous conser
tion of energy and enstrophy by the advective term of
forced two-dimensional~2D! Navier-Stokes equations give
rise to a dual turbulent cascade in the limit of infinite Re
nolds number: energy cascades to low wave numbers~in-
verse cascade! and enstrophy cascades to high wave numb
~direct cascade!. Kraichnan @1,2# predicts that the inverse
cascade carries virtually all of the energy input to ever-low
wave numbers, evading viscous dissipation altogether,
the direct cascade carries virtually all of the enstrophy in
to a high wave numberkn , where it is dissipated. This dua
cascade hypothesis conjectures that the energy spec
should scale ask25/3 in the energy-cascading range and
k23 in the enstrophy-cascading range, wherek is the wave
number.

The classical view that two-dimensional unbounded t
bulence consists of intricately intertwined inverse and dir
cascades is widely believed to be valid in the limit of infin
Reynolds number. However, there has been much nume
evidence presented in which an inverse cascade is obse
in the absence of a direct enstrophy cascade@3–6#. This has
been attributed to the low Reynolds numbers resolvable
current computers. Recently, Tran and Bowman@7# neverthe-
less argued on theoretical grounds that an inverse casca
the absence of an accompanying direct enstrophy casca
indeed possible for a wide range of Reynolds numbers.

Let us say that an inverse cascade that carries a fractir
of the energy input to the largest scales isstrong if 1 2r
!1; otherwise, the inverse cascade isweak. We will show
that a weak inverse cascade can never be accompanied
direct cascade and the small-scale spectrum is required
steeper thank25. A direct cascade~if realizable! would re-
quire a strong inverse cascade, one that carries virtually
energy to the largest scales. These results provide a the
ical explanation for the robustness of the Kolmogoro
Kraichnank25/3 inverse cascade, which is readily observa
both in numerical simulations~before the energy reaches th
1063-651X/2004/69~3!/036303~7!/$22.50 69 0363
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lower spectral boundary!, and in laboratory experiments, i
contrast to the elusivek23 enstrophy cascade@8–10#. Even
in the limit of a strong inverse cascade, spectra significan
shallower thank25 in the enstrophy range cannot be guara
teed.

A steady-state enstrophy cascade was recently show
Tran and Shepherd@11# to be impossible in a bounded do
main for an energetically localized forcing. In that case t
inverse cascade strengthr vanishes. The present work ad
dresses the question of what happens either in an unbou
domain or in bounded quasisteady flows, before statist
equilibrium is reached. The strength of the inverse cascad
again the key quantity.

We then use a numerical simulation to illustrate that
k25/3 spectrum persists even when most of the energy in
tion is dissipated in the vicinity of the forcing region, allow
ing only a small fraction of the energy input to be transferr
~via a scale-independent energy flux! to the largest scales
Finally, we investigate the dynamical behavior after the
verse cascade reaches the lowest wave number. In ac
with the constraint derived in Ref.@7#, no Bose condensation
@12# of energy on the largest scale occurs; instead, thek25/3

range gradually steepens as an equilibrium is approac
Note that we discuss only the pure two-dimensional inco
pressible Navier-Stokes equation, without the addition of a
ad hoc large-scale damping, unlike most inverse-casca
simulations reported in the literature@3,4,10,13#.

II. THEORETICAL CONSIDERATIONS

The 2D Navier-Stokes equations governing the motion
an incompressible fluid can be written in terms of the stre
function c:

] tDc1J~c,Dc!5nD2c1 f . ~1!

The fluid velocity v is given in terms of c by v
5(2]yc,]xc). The spatial operatorsJ(•,•) andD are, re-
spectively, the 2D Jacobian and Laplacian. The molecu
©2004 The American Physical Society03-1
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viscosity coefficient is denoted byn andf represents externa
forcing. The ensemble-averaged energy spectrumE(k),
which represents the energy density associated with the w
numberk, is defined by

E~k!5
1

2
k2E

upu5k
^uĉ~p!u2& dp, ~2!

where^•& denotes an ensemble average,ĉ(p) is the Fourier
transform ofc, and the integral is over all wave vectorsp
having magnitudek. The evolution of the energy spectru
E(k) is governed by~see Refs.@1,14#!

d

dt
E~k!5T~k!22nk2E~k!1F~k!. ~3!

HereT(k) andF(k) are, respectively, the ensemble-averag
energy transfer and energy input rate. The transfer func
T(k) satisfies, by virtue of energy and enstrophy conser
tion,

E
0

`

T~k! dk5E
0

`

k2T~k! dk50. ~4!

The total energy densityE5*0
`E(k) dk and enstrophy

densityZ5*0
`k2E(k) dk evolve according to

d

dt
E522nZ1e, ~5!

d

dt
Z522nP1s2e, ~6!

where e5*0
`F(k) dk.0 is the energy injection rate,P

5*0
`k4E(k) dk is the palinstrophy density, ands is the forc-

ing wave number defined bys2*0
`F(k) dk5*0

`k2F(k) dk.
We consider the quasisteady dynamics, where a steady s
trum has been established down to a wave numberk0!s.
The enstrophy is in equilibrium and the energy continues
cascade toward wave numbersk,k0 at a steady growth rate
dE/dt5e0. It follows from Eqs.~5! and ~6! that

P

Z
5s2

e

e2e0
. ~7!

A direct enstrophy cascade requiresP/Z@s2 @11#, which in
turn requirese0'e. For a more quantitative analysis, let u
assume that the quasisteady spectrum can be approxim
by

E~k!5H ak2a if k0<k,s

bk2b if s<k<kn ,
~8!

wherea, b, a, b are constants andkn is the highest wave
number in the enstrophy range, beyond which the spect
is supposed to be steeper thank2b. Following Ref. @7# we
estimate the ratioP/Z as
03630
ve

d
n
-

ec-

o

ted

m

P

Z
>

aE
k0

s

k42a dk1bE
s

kn
k42b dk

aE
k0

s

k22a dk1bE
s

`

k22b dk

5

as52aE
k0 /s

1

k42a dk1bs52bE
s/kn

1

kb26 dk

as32aE
k0 /s

1

k22a dk1bs32bE
0

1

kb24 dk

5s2

E
k0 /s

1

k42a dk1E
s/kn

1

kb26 dk

E
k0 /s

1

k22a dk1E
0

1

kb24 dk

, ~9!

where the inequality results on dropping from the numera
the spectral contribution beyondkn ~which is considerable if
b<5) and the second line is obtained by making the resp
tive changes of variablesk5k/s andk5s/k in the two in-
tegrals in each of the numerator and denominator. The c
tinuity relation as2a5bs2b was used to obtain the third
line. It follows that

E
s/kn

1

kb26 dk

E
k0 /s

1

k22a dk1E
0

1

kb24 dk

<
e

e2e0
. ~10!

Now b55 implies that the dissipation of enstrophy
uniformly distributed among the wave number octav
higher than the forcing wave numbers. A direct cascade
requiresb,5. We consider the noncascading caseb.5. If
the Kolmogorov-Kraichnan energy-range spectruma
55/3) is realizable, the denominator on the left-hand side
Eq. ~10! is less than 5/4. On the other hand, the numera
can be considerably larger than 5/4, making the left-ha
side of Eq.~10! considerably larger than unity. This require
e0 to be sufficiently close toe, allowing for the possibility of
a strong inverse cascade in the absence of a direct cas
@7#. In order forb to approach 5 from above, Eq.~10! re-
quirese0→e. Whena55/3 andb55, a good lower bound
namely (4/5)ln(kn /s), for the left-hand side of Eq.~10! can
be obtained by replacing the lower integration limitk0 /s by
0. For example, if thek25 spectrum extends for five decade
of wave numbers, the left-hand side of Eq.~10! must be
'10. Therefore, Eq.~10! requirese0 /e'0.9, corresponding
to an inverse cascade carrying 90% of the energy input to
largest scales. This explains the robustness of the inv
cascade observed in numerical simulations, regardles
what happens to the enstrophy: in the limits/kn→0, as is the
case for high-Reynolds-number turbulence, any spec
slopebP(3,5# would requiree0→e. In other words, a direct
enstrophy cascade associated with a spectrum even slig
shallower thank25 is ruled out, except possibly in the limi
e0→e. @The classical enstrophy cascade requires a h
value for the ratioe/(e2e0).# It is interesting to note tha
3-2
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ROBUSTNESS OF THE INVERSE CASCADE IN TWO- . . . PHYSICAL REVIEW E 69, 036303 ~2004!
several other theories of 2D Navier-Stokes turbulence pre
different values ofb in the range 3,b,5 @15–17#.

Further analytical considerations of Eq.~10! are met with
difficulties since it is not known howe0 , b, andkn vary with
Reynolds number. On the other hand, numerical studie
this problem face an equally formidable task~see Ref.@7# for
a discussion of the numerical limitations!. A plausible possi-
bility is to explore howe0 , b, andkn adjust with respect to
Reynolds number in the non-direct-cascading regime. T
information may then be extrapolated to the limitb→5.

III. NUMERICAL RESULTS

We now consider results from simulations that illustra
the realization of an inverse cascade where energy is tr
ferred to the large scales via the Kolmogorov-Kraichn
spectrumk25/3, in the absence of a direct cascade. We sim
late Eq.~1! in a doubly periodic square of side 2p, where the
forcing f̂ (k) is nonzero only for those wave vectorsk having
magnitudes lying in the intervalK5@99,101#:

f̂ ~k!5
e

N

ĉ~k!

(
upu5k

uĉ~p!u2
. ~11!

Here e50.01 is the constant energy injection rate andN is
the number of distinct wave numbers inK. The ~constant!
enstrophy injection rate iss2e'100, wheres2'104 is the
mean ofk2 overK. This forcing is described for the velocit
formulation in Ref.@11#. A similar type of forcing was used
by Shepherd@18# in numerical simulations of a large-sca
zonal jet on the so-called beta-plane. The attractive aspe
Eq. ~11!, as noted in Ref.@18#, is that it is steady. We ran
dealiased 13652 pseudospectral simulations (20482 total
modes! with n5531025. We initialized the simulation with
the spectrumE(k)51025pk/(1041k2). Figure 1 shows the
evolution of the total energy, enstrophy, and palinstrop

FIG. 1. The energyE, enstrophyZ, and palinstrophyP vs t.
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The dissipation of enstrophy 2nP quickly reaches the enstro
phy injection rates2e ~beforet510), giving rise to a quasi-
steady enstrophyZ'79. This amounts to an energy dissip
tion rate 2nZ'0.0079, accounting for 79% of the energ
injection rate. The energy growth rate is then 21% of t
energy injection rate, due to the inverse cascade carry
21% of the energy injection to the lowest wave numbers. I
evident from the spectrum~time averaged fromt559 to t
560) in Fig. 2 that the inverse cascade reaches the low
wave number att'60; one observes an energy-cascad
range, extended for almost two decades of wave numb
with the Kolmogorov-Kraichnan exponent25/3. This is re-
alizable in the complete absence of a direct cascade: the
strophy range is as steep ask25.7, so that virtually all of the
enstrophy is dissipated in the vicinity of the forced region

The cumulative energy transfer functionPE(k)
5*k

`T(p) dp averaged fromt535 to t560 is plotted vsk in
Fig. 3, along with the cumulative forcing/dissipationeE(k)
5*k

`@2nk2E(p)2F(p)# dp. The quasisteady nature of the spe
trum is reflected in the near coincidence of these two cur
for k.5. The energy flux is seen to be nearly uniform b
tweenk55 andk510; this is a signature of an energy ine
tial range. Note thateE(k0)52e0.

In the corresponding vorticity field, depicted att528 in
Fig. 4, one notes that the coherent structures in this flow
limited in size to the scale 2p/s by the decorrelating effec
of the forcing. Indeed, since the inverse-cascade spectru
shallower thank23 and the enstrophy-range spectrum
steeper thank23, one sees immediately that most of the e
strophy must be distributed~in the form of coherent struc
tures! around the forcing scale. In accord with Ref.@11#, the
forcing scale is also the region of maximum enstrophy d
sipation~the spectrum is steeper thank25).

The above simulation was continued up tot5720, con-
siderably long after the inverse cascade reached the lo
wave number~cf. Fig. 5!. It was observed that the energ
growth in the two-decade energy range was just sufficien
allow a spectral slope'23 to form in the lowest wave

FIG. 2. The energy spectrumE(k) vs k at t560.
3-3
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C. V. TRAN AND J. C. BOWMAN PHYSICAL REVIEW E69, 036303 ~2004!
number decade. A similar result was observed and physic
interpreted by Borue@4#. The other decade in the energ
range maintained a slope of about25/3 and the enstrophy
range remained steady. After that the whole energy ra
seems to relax toward a slope between23 and25/3. Since
the dissipation rate at the lowest wave number 1 isn
51024, for the system to approach equilibrium, it wou
take a timet'1/(2n)5104 from the moment the invers
cascade reaches wave number 1. Nevertheless, the q
steady assumption that the spectrum from the forcing w
number (s5100) to the upper truncation wave number (kT
5682) is in equilibrium may be used to predict the fin

FIG. 3. The cumulative energy transfer functionPE(k) and cu-
mulative forcing/dissipationeE(k) vsk averaged betweent535 and
t560.

FIG. 4. Vorticity field corresponding to the simulation in Fig.
at t528.
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energy-range exponenta. Given that the total equilibrium
enstrophy ise/2n5100 and that the enstrophy contributio
Z(k.k1)538.4 from wave numbers larger thank1590 has
already reached equilibrium, the remaining enstrophy con
bution must come from the large scales: 100238.4
5E(k1)*1

k1k2(k/k1)2a dk. We measured E(k1)58.2
31025 and used this value to deduce that the exponenta of
an equilibrium energy range extending fromk051 to k1
must be 2.04. It follows thata1b'8, in rough agreemen
with the resulta1b>8 derived in Ref.@7# on the basis of the
balance equationP5s2Z @obtained by settinge050 in Eq.
~7!# for a bounded fluid in equilibrium, withkn /s>s/k0. In
the present case, we havekn /s'5 ands/k0'100, so that
the conditionkn /s>s/k0 is violated; this allows the sum
a1b to fall slightly below 8. In order to obtainkn /s>s/k0
one would have to extendkn to at least 104.

Finally, we note that in a bounded domain, ak23 enstro-
phy cascade can in fact be obtained if one includes a lin
damping at the large scales. This breaks the balance equ
P5s2Z and the constraintb.5 derived from it@11#, allow-
ing the k23 enstrophy cascade illustrated in Fig. 6 to for
~dashed curve, withAP/Z'20@s52). If one in addition
artificially sets the molecular dissipation to zero within t
enstrophy inertial range by introducing the cutoffkH5300,
one obtains the pristine logarithmically corrected inert
range depicted in Fig. 6@19# ~solid curve, withAP/Z'65
@s52). Given an energetically localized forcing, these
rect enstrophy cascades have been proven to be unreali
in a steady state when the~Laplacian! molecular viscosity
acts alone@11#.

The vorticity fields corresponding to the spectra in Fig
are shown in Figs. 7 and 8. The fact that fewer coher
structures are seen in Figs. 7 and 8 than in Fig. 4 supports
suggestion@20# that coherent structures are associated w
steep enstrophy-range spectra. However, these steep sp
were shown in Refs.@7,11# to be a consequence of the glob
properties of a bounded fluid, and it may well be that it is t

FIG. 5. The energy spectrumE(k) vs k at t5720.
3-4
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ROBUSTNESS OF THE INVERSE CASCADE IN TWO- . . . PHYSICAL REVIEW E 69, 036303 ~2004!
steepness of the spectrum~steeper thank25) that allows the
coherent structures seen in Fig. 4 to form, rather than
other way around.

Ultimately, to settle the question about the validity of t
Kraichnan theory of the dual cascade, it will be necessar
learn more about the behavior of the inverse-cascade stre
r 5122nZ/e with Reynolds numberR. The variation ofr
with t is shown in Fig. 9 for a series of runs based on
simulation presented in Fig. 1, formed by scalings and the
number of modes in each direction byl andn by 1/l2, for

FIG. 6. Direct enstrophy cascades (6832 dealiased modes!
forced at wave number 2, with small-scale molecular dissipa
coefficient 1.2531024k2H(k2kH) (H denotes the Heaviside func
tion! and large-scale dissipation coefficient 0.1k0 for k<3.

FIG. 7. Vorticity field corresponding to the simulation in Fig.
with kH50.
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l5$1/8,1/4,1/2,1,2%. A well-developedk25/3 quasisteady in-
verse cascade forms only for the three highest resolution
this series. In Fig. 10 we illustrate the behavior thus obtain
for r vs the steady-state Reynolds number (2p/s)2AZ/n
5(2p/s)2Ae/(2n)/n determined by Eq.~5!. We note that
the inverse-cascade strength certainly increases with R
nolds number, as expected, but what happens in the h
Reynolds-number limit remains unclear. As seen from E
~7!, the manner in which the palinstrophy diverges as
Reynolds number increases is critical to the validity of t
dual cascade theory. What is clear is that our highest res
tion is still far away from being able to assess this theo
Even if the inverse-cascade strength should continue to

n

FIG. 8. Vorticity field corresponding to the simulation in Fig.
with kH5300.

FIG. 9. Inverse cascade strength vst for several dealiased reso
lutions.
3-5
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C. V. TRAN AND J. C. BOWMAN PHYSICAL REVIEW E69, 036303 ~2004!
with the roughly linear dependence~with respect to the loga
rithm of the Reynolds number! suggested in Fig. 10, at lea
two more decades in Reynolds number would be neede
this rate to reach the strong inverse-cascade regime (r 51)
required for the existence of a quasisteady direct enstro
cascade.

IV. DISCUSSION

In conclusion, we have derived a relation, Eq.~10!, be-
tween the energy growth rate, the enstrophy-range spe
slope, and the dissipation wave number. We used this to
plain how an inverse cascade can be realizable in the c
plete absence of a direct cascade, as observed in direc
merical simulations reported in the literature.

An inverse energy cascade transferring energy to the la
scales via the Kolmogorov-Kraichnan spectrumk25/3 and an
enstrophy range significantly steeper thank25 form, consis-
tent with many numerical results in the literature, in whi
large-scale long-lived vortices, known as coherent structu
are observed@4,20–25#; these are often blamed for causin
enstrophy spectra steeper thank23. However, these stee
spectra can be explained without reference to coherent s
tures: the steepness is merely a consequence of global
servation laws, molecular viscosity, and a spectrally loc
ized forcing@7,11#.

The inverse cascade is seen to carry only a small frac
of the energy input to the largest scale and yet ak25/3 spec-
trum manifests itself nonetheless. This suggests that ak25/3

FIG. 10. Inverse-cascade strength vs Reynolds number.
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inverse-cascading range does not require the transfer of
tually all energy input to the largest scales in the system.
ran our numerical simulations significantly long after the
verse cascade reached the lowest wave number and obs
the subsequent approach to equilibrium. We noticed that
energy-range spectral slope gradually steepens in ac
with the constraintP5s2Z for equilibrium dynamics. The
results reported here are thus consistent with recent the
ical analyses@7,11#.

Equation~7! establishes that a direct cascade cannot
exist with a weak inverse cascade. This feature is commo
a general class of incompressible fluid turbulence in two
mensions known asa turbulence@26#, and not limited to the
present case. Turbulence in a bounded domain will eve
ally approach an equilibrium state@12#, with e05dE/dt
50. We thus recover a principal result from Refs.@7,11#:
any ~bounded! numerical simulation of the two-dimensiona
incompressible Navier-Stokes equation cannot exhibit a
rect cascade in equilibrium. Numerical inverse cascade
the existing literature, limited by finite resolution, are inhe
ently weak; Eq.~7! implies that these weak inverse cascad
cannot be accompanied by ak23 enstrophy-range spectrum
in fact, the spectrum must be steeper thank25. A direct-
cascade is ruled out until the inverse cascade becomes
tremely strong. In order to gain insight into the realizabili
of a direct cascade, it may help to develop a detailed un
standing of the dynamics of the criticalk25 spectrum that
separates the noncascading and direct-cascading regime
nally, we wish to point out that the fact that an inverse e
ergy cascade at moderate Reynolds numbers carries on
fraction of the injected energy to the largest scales has
portant implications for accurate estimation of the ene
inertial range Kolmogorov constant.

In this work we have established a necessary condition
a direct cascade to be realizable: the inverse-cascade stre
must approach unity as the Reynolds number is increa
The realization of an inverse cascade in the absence
direct cascade poses closely related interesting questions
provide excellent topics for further study. First, how does
relative strength of the inverse cascade depend on the R
nolds number? Second, what Reynolds number correspo
to the onset of a direct cascade, if such a threshold exi
While we have made a preliminary attempt at answering
first question, the second question remains completely o
for future study.
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