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Robustness of the inverse cascade in two-dimensional turbulence
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We study quasisteady inverse cascades in unbounded and bounded two-dimensional turbulence driven by
time-independent injection and dissipated by molecular viscosity. It is shown that an inverse cascade that
carries only a fractiom of the energy input to the largest scales requires the enstrophy-range energy spectrum
to be steeper thak~® (ruling out a direct cascagleinless r<1. A direct cascade requires the presence of
an inverse cascade that carries virtually all energy to the largest scates<1). These facts underlie the
robustness of the Kolmogorov-Kraichn&n > inverse cascade, which is readily observable in numerical
simulations without an accompanying direct enstrophy cascade. We numerically demonstrate an instance where
the k=5 inverse-cascading range is realizable with 79% of the energy injection dissipated within the energy
range and virtually all of the enstrophy dissipated in the vicinity of the forcing region. As equilibrium is
approached, the respective logarithmic slopas and — g of the ranges of wave numbers lower and higher
than the forcing wave number satistyt+ 3~8. These results are consistent with recent theoretical predictions.
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I. INTRODUCTION lower spectral boundayyand in laboratory experiments, in
contrast to the elusivk 2 enstrophy cascad@—10. Even

It is commonly believed that the simultaneous conservain the limit of a strong inverse cascade, spectra significantly
tion of energy and enstrophy by the advective term of theshallower thark™> in the enstrophy range cannot be guaran-
forced two-dimensional2D) Navier-Stokes equations gives teed.
rise to a dual turbulent cascade in the limit of infinite Rey- A steady-state enstrophy cascade was recently shown by
nolds number: energy cascades to low wave numkiers Tran and Shepherfll] to be impossible in a bounded do-
verse cascadand enstrophy cascades to high wave numbergain for an energetically localized forcing. In that case the
(direct cascade Kraichnan[1,2] predicts that the inverse inverse cascade strengthvanishes. The present work ad-
cascade carries virtually all of the energy input to ever-lowerdresses the question of what happens either in an unbounded
wave numbers, evading viscous dissipation altogether, andomain or in bounded quasisteady flows, before statistical
the direct cascade carries virtually all of the enstrophy inpuequilibrium is reached. The strength of the inverse cascade is
to a high wave numbek, , where it is dissipated. This dual again the key quantity.
cascade hypothesis conjectures that the energy spectrum We then use a numerical simulation to illustrate that the
should scale ak > in the energy-cascading range and ask ™~ °° spectrum persists even when most of the energy injec-
k=2 in the enstrophy-cascading range, whkris the wave tion is dissipated in the vicinity of the forcing region, allow-
number. ing only a small fraction of the energy input to be transferred

The classical view that two-dimensional unbounded tur<(via a scale-independent energy fiun the largest scales.
bulence consists of intricately intertwined inverse and direcFinally, we investigate the dynamical behavior after the in-
cascades is widely believed to be valid in the limit of infinite verse cascade reaches the lowest wave number. In accord
Reynolds number. However, there has been much numericalith the constraint derived in Reff7], no Bose condensation
evidence presented in which an inverse cascade is observit?] of energy on the largest scale occurs; instead k&
in the absence of a direct enstrophy casd&@des]. This has range gradually steepens as an equilibrium is approached.
been attributed to the low Reynolds numbers resolvable biNote that we discuss only the pure two-dimensional incom-
current computers. Recently, Tran and Bowrfidmeverthe-  pressible Navier-Stokes equation, without the addition of any
less argued on theoretical grounds that an inverse cascadedd hoc large-scale damping, unlike most inverse-cascade
the absence of an accompanying direct enstrophy cascadesignulations reported in the literatufs,4,10,13.
indeed possible for a wide range of Reynolds numbers.

Let us say that an inverse cascade that carries a fraction Il. THEORETICAL CONSIDERATIONS
of the energy input to the largest scalesstsongif 1 —r _ . . .
<1; otherwise, the inverse cascadenisak We will show The 2D Navier-Stokes equations governing the motion of

that a weak inverse cascade can never be accompanied by2a incompressible fluid can be written in terms of the stream
direct cascade and the small-scale spectrum is required to enction ¢

steeper thak™°. A direct cascadéif realizable would re-

quire a strong inverse cascade, one that carries virtually all GNP+ I, A )= vAZY+ £, 1
energy to the largest scales. These results provide a theoret-

ical explanation for the robustness of the Kolmogorov-The fluid velocity v is given in terms of ¢ by v
Kraichnank >3 inverse cascade, which is readily observable=(—dyi,d,¢). The spatial operatord(-,-) andA are, re-
both in numerical simulationéefore the energy reaches the spectively, the 2D Jacobian and Laplacian. The molecular
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viscosity coefficient is denoted byandf represents external s K= dk+ b kuk4_ﬁ dk
forcing. The ensemble-averaged energy spectrb(k), P a ko + s
which represents the energy density associated with the wave Z = S "
numberk, is defined by af k2~ dk+ bf k>~ dk
ko s
1 N
=_K? 2 1 1
O IR CCEED @ s [* wivaeros [t s
_ ko/s slk,,
where(-) denotes an ensemble averagép) is the Fourier a3 @ ' K2—adK+b33—BflKB—4 dx
transform ofy, and the integral is over all wave vectqrs ko/s 0
having magnitudek. The evolution of the energy spectrum
E(k) is governed by(see Refs[1,14]) fl At fl P 6 dk
q _g? ko/s slk, 9
GrER =T~ 20kE(K) + F(K). (3) jl Kz—adK+flKB—4dk '
ko/S 0

HereT(k) andF (k) are, respectively, the ensemble—averagedwhere the inequality results on dropping from the numerator

energy transfer and energy input rate. The transfer functio - S : :
T(k) satisfies, by virtue of energy and enstrophy conservaﬂje spectral contribution beyorig, (which is considerable if

B=<5) and the second line is obtained by making the respec-

tion, tive changes of variables=k/s and k=s/k in the two in-
w0 o tegrals in each of the numerator and denominator. The con-
j T(k)dsz k?T(k) dk=0. (4) tinuity relation as”“=bs # was used to obtain the third
0 0 line. It follows that
The total energy densitf=[;E(k) dk and enstrophy 1 6
densityZ= [;k?E(k) dk evolve according to J'S/k kP~ 0 dk c
d_ fl Kz_adk+flKB_4dk\ e—eo’ (10)
aE——ZVZ'FE, (5) ko/s 0

Now B=5 implies that the dissipation of enstrophy is
az=—2vp+s2e, (6) uniformly distributed among the wave number octaves
higher than the forcing wave number A direct cascade
requiresB<<5. We consider the noncascading cg@se5. If

- . . . the Kolmogorov-Kraichnan energy-range spectruna (
— 4
= Jok"E(K) dkiis the palinstrophy density, argis the forc- =5/3) is realizable, the denominator on the left-hand side of

. - o —_ %2
ing wave number defined bszfoF(k_) dk=Jok“F(K)dk- £q (10) is less than 5/4. On the other hand, the numerator
We consider the quasisteady dynamics, where a steady Spetyy pe considerably larger than 5/4, making the left-hand

trum has been established down to a wave numkgefs.  qiqe of Eq.(10) considerably larger than unity. This requires
The enstrophy is in equilibrium and the energy continues 1o, ', pe sufficiently close te, allowing for the possibility of

cascade toward wave numbérs ko at a steady growth rate 5 sirong inverse cascade in the absence of a direct cascade
dE/dt=e. It follows from Egs.(5) and (6) that [7]. In order for 8 to approach 5 from above, E¢LO) re-
quireseg— €. Whena=5/3 andB=5, a good lower bound,
Ezsz _ ) namely (4/5)Ink,/s), for the left-hand side of Eq10) can
z €~ € be obtained by replacing the lower integration lifgt/s by
0. For example, if thé& ™ ° spectrum extends for five decades
A direct enstrophy cascade requifesZ>s? [11], which in  of wave numbers, the left-hand side of HA0) must be
turn requiresep~e. For a more quantitative analysis, Ie'g US ~10. Therefore, Eq(10) requiresey/e~0.9, corresponding
assume that the quasisteady spectrum can be approximatgflan inverse cascade carrying 90% of the energy input to the
by largest scales. This explains the robustness of the inverse
cascade observed in numerical simulations, regardless of
) what happens to the enstrophy: in the lislik,— 0, as is the
case for high-Reynolds-number turbulence, any spectral
slopeg € (3,5] would requiresy— €. In other words, a direct
wherea, b, «, B are constants ankl, is the highest wave enstrophy cascade associated with a spectrum even slightly
number in the enstrophy range, beyond which the spectrurshallower thark > is ruled out, except possibly in the limit
is supposed to be steeper thar®. Following Ref.[7] we  ey—e€. [The classical enstrophy cascade requires a huge
estimate the rati®®/Z as value for the ratioe/(e— €p).] It is interesting to note that

where e= [(F(k) dk>0 is the energy injection rateP

ak™ ¢ if kosk<s

ERO=1pks it s=k=k,,
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FIG. 1. The energy, enstrophyZ, and palinstrophy vst. FIG. 2. The energy spectrui(k) vs k att=60.

The dissipation of enstrophyP quickly reaches the enstro-
c[;hy injection rates?e (beforet=10), giving rise to a quasi-
. . ; . steady enstroph¥~79. This amounts to an energy dissipa-
Further analytical considerations of H40) are met with tion rate 2:Z~0.0079, accounting for 79% of the energy

gﬁ'cnunlgs ﬁmri?) |tr|sonrc])tﬂljnovm hror\for; aB ﬁnr?]kyrivalry \tN'g: ipjection rate. The energy growth rate is then 21% of the
eynolds number. € other hand, numerica’ SIUdIes q nergy injection rate, due to the inverse cascade carrying

th's. p“’b'?m face an equal_ly form_lda_ble lasiee Ref[?] for_ 21% of the energy injection to the lowest wave numbers. It is
a discussion of the numerical limitation#\ plausible possi- evident from the spectrurttime averaged from=59 to t

ggynflo}g ﬁﬁ?rlgeer k;gvrﬁ(é, f (;nafg(ijrzgt?g;ii;\(ljvilrﬁg rreesgp:;cet t9rhis: 60) in Fig. 2 that the inverse cascade reaches the lowest
information may then be extrapolated to the lirBit-5. wave number at=60; one observes an energy-cascading

range, extended for almost two decades of wave numbers,
with the Kolmogorov-Kraichnan exponent5/3. This is re-
IIl. NUMERICAL RESULTS alizable in the complete absence of a direct cascade: the en-
strophy range is as steep kas®’, so that virtually all of the

several other theories of 2D Navier-Stokes turbulence predi
different values ofB in the range 38<5 [15-17.

We now consider results from simulations that illustrate

the realization of an inverse cascade where energy is tran€NStrophy is dissipated in the vicinity of the forced region.
ferred to the large scales via the Kolmogorov-Kraichnan 1€ cumulative energy transfer functionlg(k)
spectrumk 53 in the absence of a direct cascade. We simu-=J« 1 () dp averaged front=35 tot=60 is plotted vsin
late Eq.(1) in a doubly periodic square of sider2where the Fig. 3, along with the cumulative forcing/dissipatiep(k)

forcing f (k) is nonzero only for those wave vectdehaving =ff[2uk2E(p)—F(_p)] dp. The quqsisteady nature of the spec-
magnitudes lying in the intervad =[99,101: trum is reflected in the near coincidence of these two curves

for k>5. The energy flux is seen to be nearly uniform be-

€ #(K) tweenk=5 andk=10; this is a signature of an energy iner-
fl=o————. (11) tial range. Note thae(ko)= — eo.
N |{p(p)|2 In the corresponding vorticity field, depicted tat 28 in
HEk Fig. 4, one notes that the coherent structures in this flow are

limited in size to the scale 2/s by the decorrelating effect
Here e=0.01 is the constant energy injection rate afds  of the forcing. Indeed, since the inverse-cascade spectrum is
the number of distinct wave numbers k The (constant  shallower thank 3 and the enstrophy-range spectrum is
enstrophy injection rate is?e~100, wheres?~10* is the  steeper thak 3, one sees immediately that most of the en-
mean ofk? overK. This forcing is described for the velocity strophy must be distributetin the form of coherent struc-
formulation in Ref.[11]. A similar type of forcing was used tureg around the forcing scale. In accord with REF1], the
by Shepherd18] in numerical simulations of a large-scale forcing scale is also the region of maximum enstrophy dis-
zonal jet on the so-called beta-plane. The attractive aspect gfpation(the spectrum is steeper th&n®).
Eqg. (11), as noted in Ref[18], is that it is steady. We ran The above simulation was continued uptte 720, con-
dealiased 1365 pseudospectral simulations (2648otal  siderably long after the inverse cascade reached the lowest
mode$ with »=5x10"°. We initialized the simulation with wave number(cf. Fig. 5. It was observed that the energy
the spectrunE(k) =10 °7k/(10*+k?). Figure 1 shows the growth in the two-decade energy range was just sufficient to
evolution of the total energy, enstrophy, and palinstrophyallow a spectral slopes—3 to form in the lowest wave
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FIG. 3. The cumulative energy transfer functiliz (k) and cu-
mulative forcing/dissipatiorg(k) vsk averaged betweer- 35 and FIG. 5. The energy spectruia(k) vs k at t=720.
t=60.

o ~_energy-range exponent. Given that the total equilibrium
number decade. A similar result was observed and physicallgnstrophy ise/2v=100 and that the enstrophy contribution
mterpretec_i by Borud4]. The other decade in the energy Z(k>k,) =38.4 from wave numbers larger thit=90 has
range maintained a slope of abouts/3 and the enstrophy  4jready reached equilibrium, the remaining enstrophy contri-

range remained steady. After that the whole energy rangg tion” must come from the large scales: ®B.4
seems to relax toward a slope betwee8 and—5/3. Since =E(k1)f';1k2(k/k1)‘”‘dk. We measured E(k;)=8.2

the dissipation rate at the lowest wave number 1 is 2 5 .

=104, for the system to approach equilibrium, it would »10 > and used this value to deduce that the exponeat
take a timet~1/(2v)=10" from the moment the inverse an equilibrium energy range extend!ng frokg=1 to k,
cascade reaches wave number 1. Nevertheless, the quag]ySt be 2.04. 1t follows that+8~8, in rough agreement

steady assumption that the spectrum from the forcing wav ith the resulta+ 5>8 derived in Ref[7] on the basis of the

_ : lance equatio=s?Z [obtained by setting,=0 in Eq.
number 6=100) to the upper truncation wave numbés ( a . S 90
—682) is in equilibrium may be used to predict the final (7)] for a bounded fluid in equilibrium, withk, /s=s/kg. In

the present case, we hake/s~5 ands/ky~100, so that
the conditionk,/s=s/k, is violated; this allows the sum
a+ B to fall slightly below 8. In order to obtaik, /s=s/k,
one would have to extenk, to at least 16,

Finally, we note that in a bounded domainka® enstro-
phy cascade can in fact be obtained if one includes a linear
damping at the large scales. This breaks the balance equation
P=s?Z and the constraing>5 derived from it[11], allow-
ing thek™ 2 enstrophy cascade illustrated in Fig. 6 to form
(dashed curve, with/P/Z~20>s=2). If one in addition
artificially sets the molecular dissipation to zero within the
enstrophy inertial range by introducing the cutkff=300,
one obtains the pristine logarithmically corrected inertial
range depicted in Fig. $19] (solid curve, withP/Z~65
>s=2). Given an energetically localized forcing, these di-
rect enstrophy cascades have been proven to be unrealizable
in a steady state when th&aplacian molecular viscosity
acts alond11].

The vorticity fields corresponding to the spectra in Fig. 6
are shown in Figs. 7 and 8. The fact that fewer coherent
structures are seen in Figs. 7 and 8 than in Fig. 4 supports the
suggestior 20] that coherent structures are associated with
steep enstrophy-range spectra. However, these steep spectra

FIG. 4. Vorticity field corresponding to the simulation in Fig. 1 were shown in Refd.7,11] to be a consequence of the global
att=28. properties of a bounded fluid, and it may well be that it is the

036303-4



ROBUSTNESS OF THE INVERSE CASCADE IN TWO. . PHYSICAL REVIEW E 69, 036303 (2004

101
10°
10-1
10-2
10-3
10-4
10-5
10-6
10-7
107 k,=300 *
10—9 — ]
10—10 — A\

10-1 E——
100 10

E(k)

Lal
107

k

FIG. 6. Direct enstrophy cascades (688ealiased modgs
forced at wave number 2, with small-scale molecular dissipation

coefficient 1.25¢10"*k®H (k—ky) (H denotes the Heaviside func- |G 8. vorticity field corresponding to the simulation in Fig. 6
tion) and large-scale dissipation coefficient k. Tor k<3. with k= 300.

steepness of the spectrusteeper thak°) that allows the _5i3 . ,
coherent structures seen in Fig. 4 to form, rather than thd=11/8,1/4,1/2,1,2 A well-developedk™°* quasisteady in-
other way around. verse cascade forms only for the three highest resolutions in
Ultimately, to settle the question about the validity of the this series. In Fig. 10 we illustrate the behavior thus obtained
Kraichnan theory of the dual cascade, it will be necessary té°r I VS Zthe steady-state Reynolds number(8)?Z/ v
learn more about the behavior of the inverse-cascade strength(27/s)“Ve/(2v)/v determined by Eq(5). We note that
r=1-2vZ/e with Reynolds numbeR. The variation ofr the inverse-cascade strength certainly increases with Rey-
with t is shown in Fig. 9 for a series of runs based on theNolds number, as expected, but what happens in the high-
simulation presented in Fig. 1, formed by scalsgnd the Reynolds-number limit remains unclear. As seen from Eq.

Reynolds number increases is critical to the validity of the

— dual cascade theory. What is clear is that our highest resolu-
tion is still far away from being able to assess this theory.
Even if the inverse-cascade strength should continue to rise
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FIG. 7. Vorticity field corresponding to the simulation in Fig. 6 FIG. 9. Inverse cascade strengthtver several dealiased reso-
with k,;=0. lutions.
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1 ——— T —— inverse-cascading range does not require the transfer of vir-
1 tually all energy input to the largest scales in the system. We

| ran our numerical simulations significantly long after the in-

- verse cascade reached the lowest wave number and observed

. the subsequent approach to equilibrium. We noticed that the

1 energy-range spectral slope gradually steepens in accord

i with the constraintP=s2Z for equilibrium dynamics. The

1 results reported here are thus consistent with recent theoret-

ical analyse$7,11].

Equation(7) establishes that a direct cascade cannot co-
exist with a weak inverse cascade. This feature is common to
a general class of incompressible fluid turbulence in two di-
mensions known aa turbulencd 26], and not limited to the
present case. Turbulence in a bounded domain will eventu-
ally approach an equilibrium statgl2], with e;=dE/dt
Sy o =0. We thus recover a principal result from Ref3,11]:

0 102 107 104 any (bounded numerical simulation of the two-dimensional
(2n/s)2 212/ incompressible Navier-Stokes equation cannot exhibit a di-
rect cascade in equilibrium. Numerical inverse cascades in
the existing literature, limited by finite resolution, are inher-
ently weak; Eq(7) implies that these weak inverse cascades
cannot be accompanied byka® enstrophy-range spectrum;
in fact, the spectrum must be steeper thar. A direct-
{alscade is ruled out until the inverse cascade becomes ex-

0.8

0.6

0.4

0.2

r
LN S B B S S B L B B e B

._.
Q

FIG. 10. Inverse-cascade strength vs Reynolds number.

with the roughly linear dependenéwith respect to the loga-
rithm of the Reynolds numbgsuggested in Fig. 10, at least
two more decades in Reynolds number would be needed L RS
. : . remely strong. In order to gain insight into the realizability
this rate to reach the strong inverse-cascade regimel | : . .
. . . . of a direct cascade, it may help to develop a detailed under-
required for the existence of a quasisteady direct enstrophg( . . B
tanding of the dynamics of the critickl > spectrum that
cascade. ; . ) . .
separates the noncascading and direct-cascading regimes. Fi-
nally, we wish to point out that the fact that an inverse en-
IV. DISCUSSION ergy cascade at moderate Reynolds numbers carries only a
fraction of the injected energy to the largest scales has im-
rtant implications for accurate estimation of the energy
ertial range Kolmogorov constant.

In conclusion, we have derived a relation, E#0), be-
tween the energy growth rate, the enstrophy-range spectr

slope, and the dissipation wave number. We used this to ex- In this work we have established a necessary condition for

plain how an mverse_cascade can be realizable n the COML direct cascade to be realizable: the inverse-cascade strength
pIet_e abs_ence pf a direct cas_cade, as observed in direct Nhust approach unity as the Reynolds number is increased
merical simulations reported in the literature. i

AN inverse enerav cascade transferring enerav to the lar The realization of an inverse cascade in the absence of a
. 9y . 9 ,%’ Yirect cascade poses closely related interesting questions that
scales via the Kolmogorov-Kraichnan spectrkii?® and an

enstrophy ranae sianificantly steeper thars form. consis- provide excellent topics for further study. First, how does the

phy range signiti y P . » CONSIS™ reative strength of the inverse cascade depend on the Rey-
tent with many numerical results in the literature, in which nolds number? Second, what Reynolds number corresponds
large-scale long-lived vortices, known as coherent structpre§0 the onset of a direct’ cascade, if such a threshold exists?
are observedd,20-29; these ar_esoften blamed for causing While we have made a preliminary attempt at answering the
enstrophy spectra steeper thkn®. However, these steep

. . first question, the second question remains completely open
spectra can be explained without reference to coherent stru d q pletely op

. for future study.
tures: the steepness is merely a consequence of global con-

servation laws, molecular viscosity, and a spectrally local-
ized forcing[7,11].

The inverse cascade is seen to carry only a small fraction This work was funded by the Pacific Institute for the
of the energy input to the largest scale and y&t &% spec- Mathematical Sciences and the Natural Sciences and Engi-
trum manifests itself nonetheless. This suggests tHat®®  neering Research Council of Canada.
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